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Crystallization of truncated hemolysin A from
Proteus mirabilis

Proteus species are second only to Escherichia coli as the most common
causative agent of Gram-negative bacteria-based urinary-tract infections and
many harbor several virulence factors that provide inherent uropathogenicity.
One virulence factor stems from a two-partner secretion pathway comprised of
hemolysin A and hemolysin B; upon hemolysin B-dependent secretion,
hemolysin A becomes activated. This system is distinct from the classic type I
secretion pathway exemplified by the hemolysin system within Escherichia coli.
In order to describe the mechanism by which hemolysin A is activated for pore
formation, an amino-terminal truncated form capable of complementing the
non-secreted full-length hemolysin A and thereby restoring hemolytic activity
has been constructed, expressed and purified. A room-temperature data set has
been collected to 2.5 A resolution. The crystal belongs to the orthorhombic
space group P2,2,2, with unit-cell parameters a = 34.47, b = 58.40, ¢ = 119.74 A.
The asymmetric unit is expected to contain a single monomer, which equates to
a Matthews coefficient of 1.72 A* Da™" and a solvent content of 28.3%.

1. Introduction

Proteus species have been implicated in a number of nosocomial and
opportunistic infections. They present most often as urinary-tract
infections in patients with urologic abnormalities or catheters, but
even in a normal host Proteus species are second to Escherichia coli
as the leading cause of urinary-tract infections caused by Gram-
negative rods (Bahrani & Mobley, 1994; Bauernfeind et al., 1987).
Proteus and E. coli are both members of the Enterobacteriaceae and
each species expresses a distinct battery of virulence determinants
including urease, pili, swarming motility, iron acquisition, IgA
protease and hemolysin. Collectively, these factors provide Proteus
with inherent uropathogenicity (Mobley & Belas, 1995).

There are numerous examples of cytolytic/hemolytic toxins,
synthesized by a variety of Gram-negative bacteria, that are asso-
ciated with diseases in humans (Bhakdi & Tranum-Jensen, 1988;
Braun & Focareta, 1991; Chakraborty et al., 2004). One such system
has been shown to be part of the two-partner secretion (TPS)
pathway in which a large exoprotein is secreted into the environ-
mental milieu. There are three general model systems described by
the TPS pathway: (i) the filamentous hemagglutinin adhesion system
of Bordetella pertussis, (ii) the high-molecular-weight adhesions 1 and
2 of Haemophilus influenzae and (iii) the hemolysin A (HpmA) and
hemolysin B (HpmB) system of Proteus mirabilis (Jacob-Dubuisson
et al., 2001). This system differs significantly from the classic type I
hemolysin system found within E. coli, a system that harbors four
distinct protein components: (i) HlyA, the cytolysin/hemolysin, (ii)
HlyB, the inner membrane trafficking ATPase, (iii) HlyC, an internal
protein acyltransferase and (iv) HlyD, an inner membrane protein.
Complete activation of HIyA requires post-translational acylation via
HlyC prior to extracellular secretion by the HlyB-HlyD complex
(Stanley et al., 1998).

All TPS pathways utilize an amino-terminal module termed the
‘secretion domain’ within the large exoprotein (termed the
A-component) and a channel-forming S-barrel transporter protein
(termed the B-component; Konninger ez al., 1999). HpmA and HpmB
from P. mirabilis are analogous to the A- and B-components in the
TPS system. The secretion of the A-component has been described as
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a two-phase process: (i) translocation into the periplasmic space via
the Sec pathway followed by (ii) specific activation and secretion into
the external environment by the B-component. The amino-terminal
secretion domain directs the exoprotein to the B-channel-specific
transporter for coupled secretion and activation into the external
environment (Jacob-Dubuisson et al., 2001). Activated in this fashion,
HpmA has been shown to disrupt both human and sheep red blood
cells and display cytotoxic effects towards other cell lines (Swihart &
Welch, 1990).

More recently, the structure of truncated filamentous hemagglu-
tinin (FHA) from the whooping cough agent B. pertussis has been
reported (Chakraborty et al., 2004). While FHA harbors minimal
overall amino-acid sequence identity, there were two more highly
conserved regions noted between the TPS A-component proteins,
including HpmA from P. mirabilis and FHA from B. pertussis. The
structure of FHA comprises a 30 kDa amino-terminal fragment and it
is noted that this TPS domain folds into a B-helix-type structure. This
motif is thought to provide a scaffolding to fold the TPS A-compo-
nents as they are secreted into the extracellular milieu. In the present
study, we have cloned, expressed, purified and collected an initial
native data set for a truncated form of HpmA (HpmA358) from
P. mirabilis. This form has been shown to activate a full-length non-
activated form of HpmA (data not shown) and the structure would be
the first TPS-related hemolysin.

2. Methods and results
2.1. Construction, overexpression and purification of HpmA358

PCR was performed with 55.7ng hpmA/hpmB template
(pWPM140), 2.5 units Pfu (Promega, Madison, WI, USA), 10x Pfu
buffer (Promega, Madison, WI, USA) and 100 pmol HpmA -forward
and HpmA-reverse primers (GibcoBRL, Carlsbad, CA, USA). The
HpmA-forward primer contained an Ndel restriction site, an ATG
start site and a 21-base sequence complementary to hApmA. The
HpmA-reverse primer contained a HindIII restriction site, a stop
codon, an in-frame coding region for a five histidines to start after
base pair 1074 and a 19-base sequence complementary to hpmA.
Standard molecular-cloning techniques were used to directionally
clone the 1089 bp PCR fragment of hpmA, incorporating the amino-
terminal 358 amino acids of HpmA and an in-frame carboxy-terminal
five-histidine sequence, into pET-24a(+) using the Ndel and HindIIl
restriction sites (Novagen, Madison, WI, USA). The resulting
plasmid (pHPMA358) was transformed into a recombinant strain
containing pWMP109 (hpmB on pACYC184) to generate the
expression strain SAA38.

The rationale for constructing a truncated version of HpmA stems
from past investigations, in which the first 358 amino acids of HpmA
were shown (i) to be sufficient for HpmB-dependent secretion across

Figure 1
Native crystal of truncated hemolysin A from P. mirabilis.

the outer membrane and (ii) to complement an inactive full-length
HpmA during the activation of hemolytic activity (Uphoff, 1991).
From these two observations, HpmA358 was postulated to form a
functionally folded product amenable to crystallization studies.

E. coli B834 (DE3) (Novagen), harboring plasmids for both
hpmA358 and hpmB, was used to express HpmA358. Cells were
grown in 2.8 1 Fernbach flasks containing 1.4 1 Luria—Bertani broth
supplemented with kanamycin (30 pg ml™") and chloramphenicol
(34 g ml™") to an optical density (at 600 nm) between 0.4 to 0.8 and
induced with 1 mM isopropyl-B-p-thiogalactoside (IPTG) for 5 h.
The cells were harvested by centrifugation at 5000g for 25 min. The
resulting supernatant was saved and the pH was adjusted to
7.8 through the addition of 1 M NaOH. The supernatant was loaded
onto an Ni**-NTA column (Qiagen) equilibrated with buffer A
(50 mM sodium phosphate, 300 mM sodium chloride pH 7.8).
Extraneous proteins were removed by the addition of buffer B
(50 mM sodium phosphate, 300 mM sodium chloride, 15 mM imida-
zole pH 7.8). Truncated HpmA was eluted from the column with
buffer C (50 mM sodium phosphate, 300 mM sodium phosphate,
400 mM imidazole pH 7.8). Purity was confirmed using SDS-PAGE
(Laemmli, 1970) and mass-spectroscopic analysis. HpmA358 was
dialyzed three times against 41 10 mM Tris—-HCl pH 7.5 and
concentrated to 15mgml~' using a Savant Speed Vac SC110A
(Global Medical Instrumentation Inc). HpmA358 was dialyzed once
more against 41 10 mM Tris—-HCI pH 7.5. All chemicals were
purchased from Fisher Scientific.

2.2. Crystallization and X-ray data collection

The initial crystallization conditions were obtained using Crystal
Screen (Hampton Research) using the hanging-drop vapor-diffusion
method with a 10 pl drop size (5 pl HpmA358 and 5 pl mother liquor)
in 1.7 x 1.6 cm wells at 291 K. The initial conditions were modified to
include 0.1 M HEPES pH 7.1, 0.1 M NH,NO; and 8-10% PEG 8000.
Typical crystals appeared within two weeks and reached maximum
size (0.2 x 0.1 x 0.075 mm) over the course of two months (see Fig. 1).

Figure 2
X-ray diffraction image from a truncated hemolysin A crystal. The edge of the
detector corresponds to 1.6 A resolution.
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Table 1
Data-collection statistics.

Values in parentheses are for the highest resolution bin.

Wavelength 1.54

Resolution range (A) 30-2.50 (2.59-2.50)
Measured reflections 26398

Unique reflections 8863
Completeness 99.7 (99.9)

Mean I/o(I) 7.0 (2.5)

Rierge (%) 11.5 (41.5)

X-ray diffraction data were collected using 0.5° oscillations with a
crystal-to-detector distance of 90 mm on a Rigaku/MSC 007 micro-
focus generator with VariMax optics and an R-AXIS IV*"" image-
plate detector. The crystals were mounted in a 0.5 mm glass capillary
tube and diffracted to 2 A resolution. A complete data set was
collected to 2.5 A at room temperature (a diffraction image is shown
in Fig. 2). The diffraction data were indexed and scaled using
d*TREK with the CrystalClear interface (Rigaku/MSC) and the data-
set statistics are listed in Table 1. The crystals belong to the ortho-
rhombic space group P2,2,2, with unit-cell parameters a = 34.47,
b = 5840, c = 119.74 A. The asymmetric unit is expected to contain a
single monomer, which equates to a Matthews coefficient of
1.72 A% Da~" and a solvent content of 28.3%. Attempts to solve the
HpmA358 structure are under way using molecular replacement with
the FHA model (PDB code 1j8f).
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